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Abstract
We propose a universal quantum circuit design that can estimate any arbitrary one-dimensional
periodic functions based on the corresponding Fourier expansion. The quantum circuit contains
N-qubits to store the information on the different N-Fourier components and M + 2 auxiliary
qubits with M = �log2 N� for control operations. The desired output will be measured in the last
qubit qN with a time complexity of the computation of O(N2�log2 N�2), which leads to
polynomial speedup under certain circumstances. We illustrate the approach by constructing the
quantum circuit for the square wave function with accurate results obtained by direct simulations
using the IBM-QASM simulator. The approach is general and can be applied to any arbitrary
periodic function.

Introduction

The field of quantum information and quantum computing advances in both software and hardware in the
past few years. The achievement of 72-qubit quantum chip, Sycamore, with programmable superconducting
processor [1] heralded a remarkable triumph toward quantum supremacy experiment [2]. On the other
hand, the photonic quantum computer, Jiuzhang [3], demonstrated quantum computational advantages
with Boson sampling using photons. The blooming of hardware development by IBM, Google, IonQ and
many others provokes tremendous enthusiasm developing quantum algorithms utilizing near term
quantum devices and pursuit of application in various fields of science and engineering. Recently there
arises a growing body of research focusing on quantum optimization [4, 5], solving linear system of
equations [6–8], electronic structure calculations [9–15], quantum encryption [16, 17], variational
quantum eigensolver [18, 19] for various problems [20–23] and open quantum dynamics [24–28].
Recently, quantum machine learning further explored and implemented quantum software that could show
advantages compared with the corresponding classical ones [29–36].

However, difficulties arise inevitably when attempting to include nonlinear functions into quantum
circuits. For example, the very existence of nonpolynomial activation functions guarantees that multilayer
feedforward networks can approximate any functions [37]. Even though, the nonlinear activation functions
do not immediately correspond to the mathematical framework of quantum theory, which describes system
evolution with linear operations and probabilistic observation. Conventionally, it is found extremely
difficult generating these nonlinearities with a simple quantum circuit. The alternative approach is to make
a compromise, such as applying simple cosine functions as activation [38], or imitating the nonlinear
functions with repeated measurements [39–41], or with assistance of the quantum Fourier transform [42]
(QFT [43, 44]). How to simulate an arbitrary function, especially nonlinear functions from a quantum
circuit is an important issue to be addressed.

In this paper, we proposed a universal design of quantum circuit, which is able to generate arbitrary
finite continuous periodic 1D functions, even nonlinear ones such as the square wave function, with the
given Fourier expansion. The output information is all stored in the last qubit, which could be measured for
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the function estimation, or used as an intermediate state for following computation, as the case of
estimating the nonlinear activation function between layers in quantum machine learning methods. We
presented the details of the quantum circuit design in the first section followed by numerical simulation of
the circuit imitating the square wave function on IBM-QASM. The final section contains complexity
analysis and further applications.

1. Design of the quantum circuit
Consider a periodic 1D function FN(x) that can be expanded as Fourier series with N nontrivial
components,

FN (x) =
N∑

n=1

an cos

(
2π

T
nx + bn

)
, (1)

where T is the period, and for simplicity we set T = π. To construct the quantum circuit that estimates the
output function FN(x), we need N-qubits to store the input information, all of which are initially prepared
at the state |ψ(x)〉 = cos x|0〉+ sin x|1〉. Additionally, there are M + 2 auxiliary qubits, with M = �log2 N�
qubits assigned q′1, . . . , q′M and the other two are q′′1 , q′′2 . All the auxiliary qubits are initially set as |0〉 states.
Thus, the input state can be written as

|Ψin(x)〉 = |0〉⊗M
q′ ⊗ |0〉⊗2

q′′ ⊗ |ψ(x)〉⊗N
q , (2)

where subscripts indicate the group of the three different registers. Figure 1(a) illustrates the structure of the
quantum circuit design for the output function FN(x), while the detailed evolution is demonstrated in
figure 1(b). There are two main modules in the quantum circuit: the first one contains Upre acting on the
auxiliary qubits q′, converting them from |0〉 to state |ψ′

f 〉, and Hadamard gates acting on q′′, converting

them to states |+〉 = 1/
√

2[|0〉+ |1〉]. The intermediate state |ψ′
f 〉 can be described as

|ψ′
f (γ)〉 =

2M−1∑
n=0

√
γn|n〉, (3)

where
∑2M−1

n=0 γn = 1 and γn � 0. Details about the design of Upre and γn can be found in the
supplementary materials (https://stacks.iop.org/NJP/23/103022/mmedia). The succeeding module is formed
by N controlled unitary operations, where q′ are the control qubits for the target qubits q′′ and q. Denote
the unitary operations as Un, with a general structure shown in figure 1(c). Initially, the Hadamard gates are
applied on q′′, and a rotation Y gate is applied on the first qubit q1. All these three qubits then acts as
control qubits, while q2 is the target in following operation. Next, qubit q2, q3, . . . , qn are connected as a
chain with simple control rotation Y gates. Finally a swap gate between qn and qN is included, ensuring that
all the necessary information are stored in the last qubit qN.

For simplicity, in the operation Un, we define wk
0,1 and vk

0,1 as

Ry(θk)†|0〉 = cos(wk
0)|0〉+ sin(wk

0)|1〉

Ry(θk)†|1〉 = cos(wk
1)|0〉+ sin(wk

1)|1〉

Ry(θ′k)†|0〉 = cos(vk
0)|0〉+ sin(vk

0)|1〉

Ry(θ′k)†|1〉 = cos(vk
1)|0〉+ sin(vk

1)|1〉

(4)

and α,β when k � 2 as

α =
1

2

n∏
k=2

| sin(vk
1 − wk

1)| (5)

βk = arctan 2(sin 2vk+1
1 − sin 2wk+1

1 , cos 2vk+1
1 − cos 2wk+1

1 ) (6)

while we have α = 1/2 and β = 2w1
1 when k = 1.

To estimate FN(x), we need to ensure that

C
N∑

n=1

an cos(2nx + bn) +
1

2
=

N∑
m=1

γmα
m

m∏
k=1

cos(2x − βm
k ) +

1

2
, (7)

where C is a nonzero constant ensuring that |CFN (x)| � 1
2 , and the superscript m of αm, βm

k indicating that
they belong to the operation Um. The right-hand side of equation (7) is the probability to get the outcome
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Figure 1. Sketch of the quantum circuit estimating FN(x). Structure of the whole circuit is shown in (a). There are two main
modules. The first one contains Upre acting on the auxiliary qubits q′ , and Hadamard gates acting on q′′ . The succeeding module
is formed by N controlled unitary operations denoted as Un. The corresponding evolution is demonstrated in (b), where q′ (blue
color) are control qubits. q′ are converted to state |ψ′

f(γ)〉 under the operation Upre , where γ is determined by FN. The detailed
sketch of Un is shown in (c). Initially, Hadamard gates are applied on q′′ , and a rotation Y gate is applied on the first qubit q1. All
these three qubits then acts as control qubits, while q2 is the target in following operation. Next, qubits q2, q3, . . . , qn are
connected as a chain with simple control rotation Y gates. Finally a swap gate between qn and qN is included, ensuring that all the
necessary information are stored in the last qubit qN.

result |1〉 when measuring qN itself after running the whole quantum circuit (more details can be found in
the supplementary materials).

Thus, subsequent to the whole operation, the output state will be

|Ψout(x)〉 =
√
−CFN (x) +

1

2
|φ0〉q′ ,q′′,q1,...,qN−1 ⊗ |0〉qN

+

√
CFN (x) +

1

2
|φ1〉q′ ,q′′,q1,...,qN−1 ⊗ |1〉qN , (8)

where |φ0,1〉 describing output state of all qubits and auxiliary qubits except the last one qN. Hence,
information stored in qN is essential and sufficient. After measuring qN, the probability of getting |1〉 is an
estimation of FN(x). Whereas, it is also appropriate to apply succeeding operations on qN, regarding it as an
intermediate state for further computation. The same quantum circuit structure works when the input is in
a superposition states, namely |Ψs

in(x)〉 describing a vector x that contains L + 1 components,

|Ψs
in(x)〉 =

L∑
l=0

cl|Ψin(xl)〉q′,q′′ ,q ⊗ |Φl〉Q, (9)

where q′, q′′, q are entangled with some other qubits, namely in Q. The superscript s represents
superposition, subscripts q′, q′′, q and Q indicate the group of different qubits in different registers, and∑L

l=0|cl|2 = 1. |Φl〉 is a complete orthogonal set of the subspace expanded by Q, ensuring that
〈Φl′ |Φl〉 = δl′l. After the whole operation, the output state is given by

|Ψs
out(x)〉 =

L∑
l=0

cl|Ψout(xl)〉q′,q′′ ,q ⊗ |Φl〉Q.

3
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If we only focus on the subspace expanded by qN and Q,

|Ψs
out(x)〉qN ,Q =

L∑
l=1

cl

[√
−CFN (xl) +

1

2
|0〉qN +

√
CFN (xl) +

1

2
|1〉qN

]
⊗ |Φl〉Q. (10)

Then if qN is measured, probability to get result |1〉 will be 1
2 + C

∑L
l=0|cl|2FN(xl) 1

2 . This property leads to
potential applications in quantum algorithm development, for example, the design of nonlinear activation
between layers in quantum machine learning.

2. Implementation: simulation for the square wave function

In this section we will demonstrate the quantum circuit design with a trivial example: simulation of the
square wave function. Consider the following Fourier expansion for the square wave function
f(x) = sign(sin 2x), the sum of the first seven terms is given by,

F(x) =
7∑

n=1∈odd

1

n
cos

[
n · 2x − π

2

]
, (11)

where F(x) is an odd function with a2,4,6 = 0. q1,...,7 are required carrying out the input information, all of
which will be initially prepared in the state |ψ(x)〉. Additionally, we need five auxiliary qubits, denoting
them as q′1,2, q′′1,2,3, and a′n, b′n satisfy

C
j∑

n=1

a′n cos(2nx + b′n) = C
N∑

n=1

an cos(2nx + bn)

−
N∑

m=j+1

γmα
m

m∏
k=1

cos(2x − βm
k ) 1 � j < N. (12)

Then for n > 1 we set ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

γn =
2n−1Ca′n

αn

βn
k = −b′n

n
, b′n �= 0

βn
k =

π

3
δ1,0 −

π

3(n − 1)
, b′n = 0

. (13)

Equation (13) ensures that γ2,4,6 are all zero, so that we do not need to construct U2,4,6 in the circuit. We
need to stress the fact that the above setting is not optimal, especially when one prefer a greater value of |C|
instead of a shallow circuit. Figure 2(a) is a scheme of the whole operation. Operations in the blue block is
Upre, which converts q′ into state |ψ′

f (γ)〉 in equation (3). Due to the fact that γ2,4,6 are all zero, then there is
no need for construct U2,4,6 in the quantum circuit. As shown in the green block, U1 is a single rotation Y
gate acts on the last qubit q7 directly. The other Un acts on q′′1,2, q1,2,...,j and q7. For illustration, we only plot
details of U3, as shown in the yellow block. Based on equations (7) and (11) can be rewritten as

F(x) =− 0.8211 · cos(2x − 4.8812) + 18.9339 · cos3(2x − 0.2384)

− 15.6030 · cos5(2x − 0.0046) − 9.1429 · cos7(2x − 0.6732)
.

Contributions of each single operation Uj alone is shown in figure 2(b). The sum of all their contributions
are shown in figure 2(c), which is the output result. P1 is probability to get the outcome result |1〉 when
measuring the last qubit q7 after the whole operation. Figure 2(d) is a sketch of the connectivity structure.
Each node represents a single qubit. If two qubits are connected via a blue curve, then there is at least one
two-qubit gate acting on them. All auxiliary qubits q′ and q′′ are connected with each other. Meanwhile, all
qubits q are connected to all of the other auxiliary qubits. For any 1 � n < N, there is also a connection
between qn and its neighbor qn+1. The last qubit qN is connected to all other qubits.

Further, we also implemented U3,5,7 independently based on IBM QASM simulator, as shown in figure 3,
where for each single dot we collect data from 8192 iterative measurements. Results from IBM QASM
simulator fit well with the theoretical prediction corresponding to U3 and U5, as shown in figures 3(b) and
(c). More details of the simulations can be found in the supplementary materials.
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Figure 2. The quantum circuit estimating 1D square wave function. (a) Is a sketch of the quantum circuit estimating square
wave function. Operations in the blue block is Upre , which converts q′ into state |ψ′

f (γ)〉 in equation (3). Due to the fact that γ2,4,6

are all zero, U2,4,6 disappears in the circuit. As shown in the green block, U1 is a single rotation Y gate acts on the last qubit q7
directly. The other Un acts on q′′1,2, qubits q1,2,...,j and q7. Attributable to the space, here we only plot details of U3, as shown in the
yellow block. Numerical simulation results are included in (b) and (c). P1 is probability to get result |1〉 when measuring the last
qubit q7 after the whole operation. x is the variable in the input state |ψ(x)〉. Contributions of each single operation Uj alone is
shown in (b). Amplitudes are not included when plotting (b). In (c), the blue curve represents the sum of contributions of all
U1,3,5,7, which is as well the expected result when measuring q7. Meanwhile, the red curve is the original shape of square wave
functions. (d) Is a sketch of the connectivity structure. Each node represents a single qubit. If two qubits are connected via a blue
curve, then there is at least one two-qubit gate acting on them.

Figure 3. Implementation on IBM QASM simulator. (a) Is numerical simulation results of U3, contributing component
cos3(2x − 0.2384), while (b) and (c) corresponds to U5 and U7, calculating components cos5(2x − 0.0046) and
cos7(2x − 0.6732). Red lines represent the theoretical prediction, and blue dots (or diamonds, triangles) represent the results on
IBM QASM simulator. P is the probability to get state |0〉 or |1〉 when measuring the last qubit. (Generally, we prefer to get state
|1〉 when calculating a positive component in the expansion, and |0〉 when calculating a negative one.) For each single dot we
collect data from 8192 iterative measurements.

3. Time complexity

We will compare the time complexity for three various situations: in the first situation we consider classical
inputs, while for others we consider some unknown quantum states as inputs. One can either estimate x
from the input and calculate FN(x) classically, or apply the method presented in this article to estimate the
outputs.

Situation I. Estimate FN(x) with a classical input x:
To estimate a periodic function FN(x) within error ε, O( 1

ε
) times of measurement are required [45].

Initially NRy rotation gates are required for mapping x into quantum state |ψ(x)〉⊗N. Moreover, we need

5
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M + 2 auxiliary qubits, where M = �log2 N� for control qubits. Upre contains O(exp(M)) multi control
gates, and in each of them there are at most M − 1 control qubits. The time scaling of n-control gates is
O(n2) [46], thus the time complexity of Upre is O(N�log2 N�2).

Consider the basic unit Un. When n > 2, there are four control–control rotation gates, 4n − 8
control-rotation gates and one optional two-qubit swap gate. Thus, it takes time O(n�log2 n�2) to
implement the operation |n〉〈n| ⊗ Un. After taking the M auxiliary qubits into account, M control qubits
are added to all gates in Un. Therefore, it takes time O(n) to achieve a single Un Notice that there are N
similar Un, where n = 1, 2, . . . , N, time complexity to finish all

∑N
n=1|n〉〈n| ⊗ Un is O(N2�log2 N�2).

Totally, to derive the estimation CFN(x) within error ε, the time complexity is of order
O(N2�log2 N�2/ε), which is still polynomial. On the other hand, time complexity to estimate FN(x) for a
single x based on Taylor expansion is also polynomial to N. Hence under this situation there is no speedup
comparing with the classical calculation.

Situation II. Estimate FN(x) with input quantum state |ψ(x)〉⊗N, where the value of x is still unknown:
The only difference from the previous situation is that the mapping process now can be skipped. Still,

time consuming is of order O(N2�log2 N�2/ε). By contrast, to calculate FN(x) from |ψ(x)〉⊗N classically, the
first step is to derive x from the input states. It requires O( 1

ε
) measurements to get cos x within error ε, and

then the time complexity to estimate FN(x) is polynomial to N. Still, under this situation there is no
speedup comparing with the classical calculation.

Situation III. Estimate
∑L

l=0|cl|2FN (xl) with input quantum state |Ψs
in(x)〉, as described in equation (9):

Here we denote N
′

as the number of qubits that form state |Φ〉, and L = 2N ′ − 1. Even though more
variables are introduced into the input, we do not need to change anything in the quantum circuit. To get
an estimation of C

∑L
l=0|cl|2FN (xl) with the quantum method, time consuming is still of order

O(N2�log2 N�2/ε), which does not depend on the scale of N′(number of qubits in Q). However, in the
classical method, as cj are unknown initially, one must estimate them before calculating

∑L
l=0|cl|2FN (xj).

Time complexity of quantum tomography is exponential in N′, or at least polynomial in N′ with shadow
quantum tomography. The time complexity of quantum method is only determined by N, while the
classical method is at least polynomial in N′ [47]. Thus, when N′ � N, the quantum method will lead to
polynomial speedup comparing with the classical one. Consider the task to estimate |c0|2F(x0) + |c1|2F(x1),
where |c0|2 + |c1|2 = 1. For simplicity, here we set F(x) = cos3(x − 0.2384), which can be implemented by
U3 itself, excluding the q′ registers. (Structure of U3 can be found in figure 2 in the main article and figure
S2 in the SM.) In situation III, the input states |Ψs

in(x)〉 can be described by equation (9).
In the task estimating |c0|2F(x0) + |c1|2F(x1), we only need one qubit as Q preparing the initial states. A

sketch of the quantum circuit calculating |c0|2F(x0) + |c1|2F(x1) is shown in figure 4. There are totally six
qubits, q′′1,2 and q1,2,3 implementing U3, and qubit Q corresponding to equation (9). Initially, all qubits are
set as |0〉. Operations in the dashed blue square converts them into state

|Ψs
in(x0, x1)〉 = c0|Ψin(x0)〉q′ ,q′′,q ⊗ |0〉Q + c1|Ψin(x1)〉q′,q′′,q ⊗ |1〉Q, (14)

where |Ψin(x)〉q′,q′′,q = |0〉⊗2
q′ ⊗ |ψ(x)〉⊗3

q , and |ψ(x)〉 = cos x|0〉+ sin x|1〉. Coefficients c0,1 are determined
by the gate Ry(θsup) acting on Q, leading to

c0 = cos

(
θsup

2

)

c1 = sin

(
θsup

2

)
.

By tuning the parameter θsup, we can study the performance of the quantum circuit that calculates
|c0|2F(x0) + |c1|2F(x1) with various c0, c1.

Then, operation U3 is applied on q′ and q, implementing the calculation of F(x). After the whole
operations, the output state is given by

|Ψs
out(x0, x1)〉 = c0|Ψout(x0)〉q′,q′′,q ⊗ |0〉Q + c1|Ψout(x1)〉q′,q′′,q ⊗ |1〉Q,

where |Ψout(x)〉 is described by equation (8).
In this example, P0, which represents the probability to get result |0〉 when measuring q3, can be

calculated as

P0 = cos2

(
θsup

2

)
[0.2362 cos3(2x0 − 0.2384) + 0.5]

+ sin2

(
θsup

2

)
[0.2362 cos3(2x1 − 0.2384) + 0.5]. (15)

6
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Figure 4. A sketch of the quantum circuit that calculates |c0|2F(x0) + |c1|2F(x1). There are totally six qubits, q′′1,2 and q1,2,3
implementing U3, and qubit Q corresponding to equation (9). Initially, all qubits are set as |0〉. Operations in the dashed blue
square converts them into state |Ψs

in(x0, x1)〉, as shown in equation (14). Then, operation U3 is applied on q′ and q, implementing
the calculation of F(x). After the whole operation, we only to measure q3 itself to estimate |c0|2F(x0) + |c1|2F(x1). P0, the
probability to get result |0〉 when measuring q3 is presented in equation (15).

Figure 5. Implementation on IBM QASM simulator. Here we present the simulation results obtained from IBM QASM
simulator. In both figures P0 indicates the probability to get result |0〉 when measuring q3 after the whole operation shown in
figure 4. Blue dots or diamonds represent the simulation results from IBM QASM simulator, while the red curve is theoretical
prediction based on equation (15). In (a), we set x0 = 0, θsup = π, and collect P0 under various x1 values. P0 shows the shape of
F(x1), as we set θsup = π so that x0 has no contribution to P0. In (b), we set x0 = 3.4, x1 = 0.2, and collect P0 under various θsup

values. Theoretically P0 should have a single sin function shape, and the simulation results fit the prediction very well. For each
single dot we collect data from 8192 iterative measurements.

Thus, we only need to measure q3 itself to estimate |c0|2F(x0) + |c1|2F(x1).
Further, we implement the operation shown in figure 4 on IBM QASM simulator. Simulation results

obtained from IBM QASM simulator are shown in figure 5(b), where P0 indicates the probability to get
result |0〉 when measuring q3 after the whole operation. Blue dots or diamonds represent the simulation
results from IBM QASM simulator, while the red curve is theoretical prediction based on equation (15). In
figure 5(a), we set x0 = 0, θsup = π, and collect P0 under various x1 values. P0 shows the shape of F(x1), as
we set θsup = π so that x0 has no contribution to P0. In figure 5(b), we set x0 = 3.4, x1 = 0.2, and collect P0

under various θsup values. Theoretically P0 should have a single sin function shape, and the simulation
results fit the prediction very well. For each single dot we collect data from 8192 iterative measurements.

In the simulation only one qubit, q3, is measured, and |c0|2F(x0) + |c1|2F(x1) can be estimated from P0,
the probability to get result |0〉. Thus, with the quantum algorithm as we proposed, we do not need to
estimate the exact values of cl. In other words, the time consuming of quantum algorithm does not rely on
N′. On the contrary, evaluating the coefficients cl requires polynomial time of N′ with the shadow quantum
tomography [47]. When N′ � N, the total time consuming mainly rely on the terms determined by N′.
Therefore, in situation III the quantum method will lead to polynomial speedup comparing with the
classical one.

4. Conclusion

Here, we propose a universal quantum circuit design for any arbitrary one-dimensional periodic function.
The inputs are sufficient qubits prepared at the same state, while the last one will represent the output
outcome. One can either estimate the exact value from repeating measurements on the last qubit, or regard
it as an intermediate state prepared for succeeding operations. Superposition in the input leads to similarly

7
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superposition in the output, which leads to polynomial speedup under some certain circumstances when
dealing with unknown quantum inputs. As an simple example we illustrate the quantum circuit design for
the square wave function. Both exact simulations and implementation on IBM-QASM gave very accurate
result and illustrate the power of this proposed general design. This general approach might be used to
construct an appropriate quantum circuit for the electronic wave function in periodic solids and materials,
moreover in quantum machine learning particularly simulating the non-linear function used in the
network.
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